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On the mechanics of a magnetohydrodynamical 
twin wake 
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(Received 25 July 1962) 

In  this paper, we consider the elementary processes involved in the appearance 
of a simple twin wake in the two-dimensional steady aligned flow of an electric- 
ally conducting viscous incompressible fluid in a uniformly applied magnetic 
field. Fundamental relations between the twin wake and its elementary process 
are generally discussed, and the corresponding initial-value problem is for- 
mulated. Then, the solution of the initial-value problem corresponding to the 
above simple twin wake is obtained, and two limiting cases with the magnetic 
Prandtl number near one and zero (or infinite) are discussed in detail. In  both 
cases, it is found that negative vorticity appears in between the main positive 
vorticity associated with the two Alfvh spots. This fact gives some clue to the 
understanding of the property of twin wakes. As an application, the crossed-flow 
case is also discussed, and a conjecture upon the vorticity distribution is made. 

1. Introduction 
In  this paper, we shall restrict ourselves to the two-dimensional motion of an 

electrically conducting viscous incompressible fluid in a uniformly applied 
magnetic field. The study of steady small perturbations in an aligned uniform 
field is fundamental in magnetohydrodynamics and has attracted the attention 
of several authors (see, for example, Greenspan & Carrier 1959; Hasimoto 1959, 
1960; Lary 1962; Yosinobu & Kakutani 1959; Yosinobu 1960). Among the 
characteristic features hitherto found, the most interesting for us is the appear- 
ance of a twin wake: one of these always extends to infinity downstream and the 
other to infinity up- or downstream as the Alfv6n number is smaller or larger 
than one. The latter becomes thinner as the magnetic Prandtl number is decreased 
(or increased) from one, and disappears in the limit of zero (or infinite) Prandtl 
number, while the other retains a definite width even for the above limits. 

By what mechanism do these wakes appear? And more especially, by what 
mechanism does a wake disappear in the limits? The first question seems, at 
first sight, self-evident from an intuitive point of view. Yosinobu assumed, in 
analogy with the classical diffusion process, that point vorticity shed instan- 
taneously from the origin into the fluid at  rest diffuses in the vicinity of the two 
Alfv6n spots emanating from the origin with the Alfvhn speed (figure I),  and 
answered the first question in the following manner: the wakes can be taken as 
the pattern of the diffusion process of the vorticity shed continuously from the 
origin into the uniform flow. This might seem to be a complete answer, but, as 
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will be shown later, it  is only complete when the magnetic Prandtl number 
is equal to one. Moreover, there remains the problem of why and how one can 
proceed on the basis of the analogy with the classical diffusion process. Thus, 
an apparently simple first question is in reality very difficult. The difficulty will 
become clearer if one considers the first question in connexion with the second. 

In  this paper, we consider the above two questions anew from the unified 
point of view that any phenomena in the steady flow can be explained by a 
corresponding elementary process which is universal with respect to the velocity 
of the uniform flow. In  $2,  we consider the relations between the twin wake 
and its elementary process, and formulate the corresponding initial value 
problem. In  $3,  the above questions with respect to a simple twin wake are 
considered and an elementary process including Yosinobu’s assumption as a 
special case is obtained. Limiting cases with the magnetic Prandtl number 
near one and zero (or infinite) are discussed in detail, from which an intuitive 
answer can be given. As an application of the theory, the steady small perturba- 
tions in the crossed uniform flow are considered in $ 4, and a conjecture upon the 
extensions of Hasimoto’s result (Hasimoto 1960) to the case, when the magnetic 
Prandtl number is near one, is given. 

2. Relations between the twin wake and its elementary process 
In  considering the elementary process, we assume that the disturbances in 

the fluid, which is initially at rest and in a uniform field iB,, are small. The 
equations governing the motion can then be linearized and in a M.K.S. system 
of units are N 

(2.1) curlG = -a6/at, 

P,  = 0,  
N r  

curl b = pj, 

div b = 0, 
- ”  

j = cr(B +B x ilBo), 
N 

divf = 0, 

p,aB/at = - g g d p + p o d B +  j x ilBo, (2.7) 

where i5 is the electric field, p ,  the electric charge density, i,Bo + 6 the magnetic 
induction, j the electric current density, 4 the velocity, p ,  + fi the pressure, po the 
undisturbed pressure, po the density, ,u the magnetic permeability, cr the electric 
conductivity, Y the kinematic viscosity, (2, y”, .Z) the right-handed Cartesian 
co-ordinates system with the Z-axis in the direction of i, and the tilde over each 
letter indicates that the letter is a variable in the fluid at rest, respectively. In  
the above equations, the assumption of two-dimensionality 

= ( E ,  ij, o), 6 = &,&, o), a/ae = 0,  (2.8) 

is used implicitly, so that B and j must be understood to be of the following form: 

B = ( O , O , E ) ,  j = ( O , O , j ) .  (2.9) 
39-2 
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Operating with c&l on (2.5) and (2.7) and eliminating i5 by (2.1), we obtain 

zvm(z, y”, z ) j  = - (B,/P) aqaz:, (2.10) 

zv(z, y”, t)  = - ( ~ , / p , )  ajlaz, (2.11) 

zu(z, y”, t”) = UA - alaf, d = az/azz+ ayap,  where 

and B = afi/aZ - aG/ay” is the vorticity and urn = ( p ) - l  the magnetic diffusivity, 
respectively. 

Eliminatingj (or B), we obtain 

(2.12) 

where L(z,y”, t”) = lu(z, i j ,  t) lvm(2, i j ,  t“) -a& a2/az2, 

and ara = (Bi/pp,)$ is the Alfvbn speed. Equations (2.10)-(2.12) reduce to those 
appropriate to the propagation of Alfvhn waves in the special case when 

u = urn = 0;  

the full equations are generally taken to represent the diffusion of the Alfvbn 
waves. 

Indeed the latter is the case at  sufficiently large distances from the centre of 
the disturbance, as can be seen by putting equation (2.12) in the form: 

when V = $(u  + vvJ. At  very large distances all gradients are small and the lowest 
order derivatives must predominate, so that the right-hand side of the above 
equation will be small. Neglecting the right-hand side, the resulting equation 
tells us that diffusion takes place about the two Alfvbn waves with diffusivity 
equal to the algebraic mean of the magnetic diffusivity and viscosity. The same 
is true if the magnetic Prandtl number is unity, since the right-hand side 
disappears also in that case. 

At distances closer to the origin of the disturbances it may be thought that the 
fourth order term in the right-hand side of equation (2.12 a )  might contribute to  
the motion, and it is this effect which we seek to examine. Of necessity it must 
be stressed that the above equation is the result of linearizing the equations of 
motion, and though this might be true at large distances, it may not be true at  
smaller distances. However, there might well be a restricted region depending on 
the size and nature of the disturbance, where linearization is valid but where the 
right-hand side makes a definite contribution. It is in such a region that the 
results of this paper will be applicable. Since the peculiarity of such diffusion 
phenomena in incompressible fluid is expected to be clarified by the study of 
j and B, we shall restrict ourselves to it. Further, if we restrict ourselves to the 
disturbances emanated from the finite part in the space, we require the following 
boundary conditions : 

j + O  and B + 0  as Z’2+y”2+m. (2.13) 
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The linearized basic equations for the steady small perturbations in the 
uniform flow vo = (uo, vo, 0) can be obtained by applying the infinitesimal Galilei 

(2.14) transformation 

Pe = Pe, (2.15) 

6 = b, (2.16) 

5 = j ,  (2.17) 

6 = e + v 0 x b ,  

3 = v, (2.18) 

p = p ,  (2.19) 

(2.20) 

t " =  t ,  (2.21) 
(2, y", 2) = ( x  - uot, y - ?lot, x ) ,  

on the above equations and neglecting the terms with a/at. The equations for 
j and o = &/ax - au/ay are as follows: 

(2.22) 

(2.23) 

(2.24) 

where x/vo in the operators indicates that apt" in the original operators is changed 
into ( vo . grad). 

Since the above equations are linear, j and o can be obtained by the super- 
position of J and 0 as follows: 

j = ~omj (x -uo t , y - vo t , t )d t ,  (2.25) 

roo 
(2.26) 

The boundary conditions (2.13) are then transformed as follows: 

j + O  and w + O  as x2+y2+co. (2.27) 

These equations are the mathematical expression of our intuitive expectations 
that the steady perturbations can be constructed by the unsteady ones shed 
continuously into the uniform flow and that each of the latter reduces to that 
in the fluid at rest if observed on the basis of a co-ordinate system moving with 
the uniform flow. Substituting these into the left-hand side of (2.22) and (2.23) 
and taking into account (2.10) and (2.11) and assuming that j + 0 and 0 -+ 0 
as Z + 00, we obtain 

4/&, Y, x/vo)j + (Bo/P) aw/ax = -J@, Y ,  O ) ,  

&(x, Y, xlvo) + (B,/p,) a jpx  = - q x ,  y ,  0). 

(2.28) 

(2.29) 

The steady perturbations constructed as above have the source corresponding 
to the initial perturbations, as will be expected from their construction. On the 
other hand, since the equations of the form (2.28) and (2.29) are those of the 
singular solution representing the twin wake, the above can be taken as showing 
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the one-to-one correspondence between the twin wake and the initial perturbation. 
The initial perturbation may depend on v,. However, since the range of its 
values can be covered by the family of it  independent of v,, we shall restrict 
ourselves to the family, hereafter. This restriction represents our point of view 
that any phenomena in the steady flow can be explained by the corresponding 
elementary process universal with respect to v,. 

On the basis of the results obtained above, we shall discuss the unsteady 
formation of a simple twin wake satisfying the singular equations (2.28) and 
(2.29) and the boundary conditions (2.27) by means of the solution of (2.10) 
and (2.1 1) satisfying the boundary conditions (2.13) and the initial conditions 

j = j(2, y", 0 )  and B = B(2, y", 0 )  for t" = 0,  (2.30) 

where the right-hand sides are independent of v,. Since the initial values of 
j ;  and 0; can be obtained from those of j and 4, or alternatively those of j and j ;  
by those of 07, and Bi (see (2.10) and (2.11)), the above initial-value problem is 
equivalent to the problem of solving (2.12) with respect to 6 under the boundary 
condition (2.13) and the initial conditions 

4 = B(2 ,  y", 0 )  and Bi = Bj(2, y", 0 )  for t" = 0. (2.31) 

Therefore, we shall further restrict ourselves to the consideration of 4 and discuss 
only the vorticity wake by the solution of the above form of initial-value problem. 

3. Elementary process of a simple twin wake 
Let us consider a small perturbation in the aligned uniform flow v, = (u,, 0,O) 

represented as follows: 2 

w, = z wOi(x,y), (3.1) 

where woi = ( 2 ~ ) - ~ e x p ( & k ~ x ) K ~ ( &  llcil r ) ,  r = (x2+y2)a, (3-2) 

ki = [uo(v + v,) - ( - 1)i {u;(v + v,)2 - 4vv,(ug - a",}~]/2vvm, (3.3) 

i=l 

and KO is the modified Bessel function. As has been shown by previous authors, 
woi is nearly zero almost all over the flow field at a great distance from the origin 
except in the wake near the x-axis, extending to infinity down- or upstream as 
ki is positive or negative, and having a width roughly proportional to { 1x1 /lk$J}t. 
Thus, w, represents a simple twin wake one part of which extends always to 
infinity downstream while the other to infinity down- or upstream as the Alfvbn 
number A = uo/am is larger or smaller than 1 (figure 2). wo is symmetric with 
respect to v and v,, and the wake represented by wol becomes thinner as the 
magnetic Prandtl number P, = v,/v is decreased (or increased) from 1 and dis- 
appears in the limit of zero (or infinite) P, while the other retains a definite width 
even in these limits. Since the widths of the wakes in the case with P, = 1 are 
proportional to (v 1x1 /(uo + a,))& and (v 1x1 / lu, - a,l}*, we can expect an elemen- 
tary process similar to that assumed by Yosinobu (figure 1). Since the parts in 
the general width {Ixl/llcil}& corresponding to u, and a, are proportional to uo 
and {ug( + v , ) ~  - 4vv,(ug - a,)}+, we must make an extraordinary assumption 
about the speed of emanation of the centre of the diffusion if we want still to 
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accept Yosinobu's assumption for the general case with P, $. 1. However, such 
a fact is nothing but the indication of the impropriety of the above assumption. 

Now, it can be shown by the method of Fourier integrals that the above simple 
twin wake satisfies the following singular equation : 

qz, y, xiuo) 0 0  = - {2vv,A - uo(v + v,) a/ax:) +, 9)) (3.4) 

where 6 is Dirac's delta function. Comparing this with 

qz, y, x/u,) wo = - (v + v,) A&, + ao,/af+ uo ac;i,/aqli=,, (3.5) 

.--. 
0 \  

I \ 
I 
I I 

I 

'x. - -./ I 

FIGURE 1. Yosinobu's assumption for the elementary 
process of MHD twin-wake formation. 

obtained by the elimination o f j  from (2.28) and (2.29)) we obtain the following 
initial conditions for the elementary process of the above twin wake: 

where use is made of the fact that 0, is independent of uo and that D = x and 
y" = y at 8 = 0. As is expected from the property of w,, the basic equations of the 
above elementary process ((2.12)) (2.13)) (3.6) and (3.7)) are symmetric with 
respect to Y and vm. Since the solution for the case with P, > 1 can be obtained 
from that for P, < 1 by the exchange of v and urn, we can restrict ourselves to  
the latter case. Similar restriction to a consideration of the first quadrant can 
be effected because of the symmetry with respect to D and 8. 

The solution of the previous initial-value problem with the above initial con- 
ditions can be obtained by the method of Fourier integrals. However, since the 
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calculations involved are straightforward and lengthy, only the results are 
given : 

9, = 9,+92,1+9,,,, (3.8) 

(3.9) 

(3.14) 

2 

i=l 
Q22 = x exp ( - R21i) C11L 2-1{Jz(R2zi) - Jl?(Rzzi)l 

+ 211211122 Jl(RZ2i) + 11221 J O P 2 2 i ) l )  (3.15) 

(3.16) i 
where [z = (v + v,y+ ( 6 2  - 1) (v - vm)2, 

72i = (v+vm)?g~1((52-l)* IY-V,l  (v+v,)--l)i--l, 

rZi = {a,Eg- ( -  i ) i z }2+y”2 ,  

Rzii = 72ir$(2&-1, 

and the J, are ordinary Bessel functions. In  the course of the ca.lculations, we 
use the formula of Sonine and Gegenbauer: 

jom J,(bt) H,!2)(a(t2 +xz)&) (t2 +x2)-6utp+ldt 

) (3.17) 
(@/au) {(a2 - b2):/x)Y-p-l H(2’ u-,L-l(x(a2-b2)&) for a > b, 
(2ibp/na’) { (b2  - a2)*/x)Y-p-l K s-p-1 (x(b2-a2)*) for a < b;  

the formula of Laplace transformation: 

where 
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the formulae for the integral representation of the Bessel functions : 

617 

4 "0 - 
------------ 

J,(x) = (217~) (1 - P - 4  cos xtdt; So1 

_____--_------ 
,* _____________--  --- ------ !:;//~ -------- 

------- - _ _ _ _ _ _ _  ' - ----_____ 

----__ ----- -______ ----__ 

A > 1  

(3.21) 

I 
A < 1  

FIGURE 2. MHD twin wake. 

the formula of the Fourier integral: 

/oap2yLexp ( - a2p2> cospxdp = ( - 

(3.22) 

(see, for example, Magnus & Oberhettinger 1948 and ErdBlyi 1954), the usual 
technique of the contour integral and assume that the order of the integrations 
can freely be exchanged. 

ma 2--n-1a--2n-1 exp ( - x2/4a2) He,,( 2-4z/a) 
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Since it is prohibitively difficult to perform the above integrations .for the 
general case, we restrict ourselves to the two typical limiting cases: ( 1 )  P, + 1 
and ( 2 )  P, = 0 (or P, = a). 

( 1 )  Case with en + 1. By expanding 0, with respect to lv- v,J and retaining 
the terms up to the order O(1v- v , ( ~ ) ,  we obtain the following result: 

n 
Y 

6, = (474-1 C exp { - 7;/2t(v + v,)) 
i= 1 

- (v - v , ) ~  ( 1 6a,)-l {2d3( v + v,)~}-& exp { - g2 /2 f (v  + v,)) 
x [{l +2y"~/E(v+v,)-fj4/E2(v+vm)2} 

1 - 2-1 c erfc ( 2 ~ ( 2 t ' ( v  + v,)}")) 2 

i= 1 

where Zi = a,f- ( -  l)iiE, 7: = Z:+g2. (3 .24)  

When P, = 1, the vorticity diffuses in the vicinity of two Alfven spots emanating 
from the origin with the A1fvi.n speed showing the correctness of Yosinobu's 
assumption. However, if P, differs slightly from 1, these main vorticities behave 
as if v becomes the algebraic mean of v and v,, and further there appears the 
region of negative vorticity diffusing roughly uniformly in between these main 
vorticities (figure 3). 

Substituting (3 .23 )  into (2.26), we obtain 

2 

i= 1 
~0 + (2n)v1  X exp [ ~ { U ~ - ( - ~ ) ~ ~ , ) / ( ~ + Y , ) I K O { ~  I ~ o - ( - l ) ~ c ~ , ( / ( v + v m ) }  

- (v-v,)2{4na,l(v+v,)3}-1 
2 

2=1 
x ,X {uo - ( - am}2 exp [x{u0 - ( - 1)i a,)/(v + vm)I ( - 

x [xKo{r (a0 - ( - am1 /(v + vm)}  

- ( ~ ( u O -  ( - lYarn} / ]Uo-  ( - l ) i a m l  ) K , { r  - ( - l ) i a m [ / ( v  + vm)}I> (3 .25)  

where vo = (u0, 0,O) has been used. The above agrees completely with the expan- 
sion of (3.1) with respect to Iv - v,l up to the order O[(v - v , ) ~ ]  showing that our 
procedure is perfectly correct. Applying the asymptotic expansion of K, to 
(3 .25) ,  we can show that the strength of both wakes is weakened and the degree 
of the weakening is larger for wO1. This fact can be understood as the result of 
the cancelling action of the negative vorticity. 

( 2 )  Case with P, = 0 (or P, = a). In  this case, we cannot carry out the simple 
expansion and thus cannot obtain a unified analytical expression as above. We 
therefore restrict ourselves first to the asymptotic behaviour of the vorticity 
distribution on the positive part of the 2- and the +axis for large t", and then 
conjecture upon its overall behaviour. By applying the usual method of cal- 
culating the asymptotic expression for the integral, we obtain the following 
results. 
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On the Z-axis: 

8, v4(4;rramt"8)-1 

{I,(s) - Io(s)} e-Ssgds 

-(2;rr*)-11m e-C<-ld<] for Z - O(Z&), 
dYan,i) -2 

8, $ v4(4;rramZ4)-l {Z+C&P( 1 - LZ) Z-2k-2-4) 

(1 - k - (3 + k ) / 8 X . .  .}exp { - (1 - k) h'/k}dh' 

(3.26) 

2 N O(t) ,  (3.27) 
2 < amZ, + /o'k{Il(X) - LIo(X)} 234 exp ( - X / L )  dX for 1 

FIGURE 3. The elementary process in the case with P ,  5 1. 

where k = { 1 - (Z/a,t")2}&, 

8, !$ (47~Z)-1 u& t"2Z-2 exp ( - ~ 2 )  

- v4(47ramf3)-l [{(2n)*/16}{1 +erf ( K ) }  

+ 2+8-l~(  15 + 2 ~ 2 )  exp ( - K Z ) ]  for Z N am& (3.28) 

where K = (amt"-2)/(2vf)+, 

wo v*(4namt l9) - l (2;rr )~(Z2/a~t"2){2F(~,~;  1; -K2)-2F($,g; 1;  - K 2 )  

(3.29) 
Z N O(Z), + $( 1 - 3K2) F(g, z ;  2;  - K2)} for 2 > a m f ,  

where 

and F is the hypergeometric function. 
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On the y”-axis: 

0 0  4 - - u&( 4na, $-I 2-1 exp ( - ij2/Svt) 

X [(4d/g2)* w,0(y”~/4Yt) - 2w*,i(gz/4Uf)], (3.30) 

where W is the Whittaker function. The vorticity distribution 011 the Z-axis is 
shown in figure 4, and the conjecture upon the asymptotic behaviour of the 
overall vorticity distribution is given in figure 5 .  

FIGURE 4. Vorticity distribution on the 3-axis in the case with P ,  = 0 (or co). 

a,,, 1 -1 

FIGURE 5. The elementary procem in the case with P ,  = 0 (or 00). 
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As in the previous case, the main positive vorticity diffuses in the vicinity of 
two Alfvkn spots emanating from the origin with the Alfvhn speed, and the 
negative vorticity diffuses in between these. An important difference between 
these limiting cases consists in the fact that the negative vorticity now con- 
centrates in the vicinity of the origin. Thus the disappearance of a wake in this 
limit can be understood as the result of the complete cancellation of the rear wake 
wol by the interference between a part of the main vorticity and the negative 
vorticity . 

The above expected cancellation of wakes is obtained from a consideration 
of a special simple case. However, the fact that the wakes cancel because of the 
interference between the vorticity regions with opposite sign will be the key to 
understanding the property of magnetohydrodynamical twin wakes. 

4. A conjecture upon the vorticity distribution in a uniform flow crossed 
by the magnetic field 

The results in the previous section were obtained with special regard to the 
unsteady formation of a simple twin wake in the aligned uniform flow. How- 
ever, since they are universal with respect to the velocity of the uniform flow, 

FIGURE 6. An oblique twin wake in the case with P ,  = 1. 

we can apply them to the case where the uniform flow is crossed by the applied 
magnetic field. In  fact, they correspond to the steady vorticity field satisfying 
the following singular equation (see (2.28) and (2.29)): 

L(z,y,x/v,)w = -2vvmAr3+ (v+vm) (v,.grad)&, (4.1) 

w + O  as x2+y2+co. (4.2) 

and the boundary condition: 
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These equations are solved by Hasimoto (1960) for the case P, = 1,  and the 
solution is: 

wi = (2n)-lexp([{u,-( - l ) i a , } x + v o y ] / 2 ~ ) K o ( r [ { u o - (  - 1 ) i a , } 2 + v ~ ] ~ / 2 ~ ) .  (4.4) 

This shows that an oblique twin wake appears in the crossed uniform flow (figure 
6). The extension of this result to the case of P, !+ 1 is an interesting problem; 
however, no positive results have yet been obtained. On the basis of our previous 
results (although we cannot obtain a simple analytical expression) we can easily 
arrive a t  a conjecture upon the vorticity distribution as shown in figure 7. 

FIGURE 7. A conjecture upon the vorticity distribution in the 
crossed uniform flow case with P ,  + 1.  
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